Full text: (Band VII.)

6 
, jL-fr •-> 
'.kr 
v!' s*4 ’■ 
sive 
d 2 £ ^x' — x 
W = 2m'k= ( —p— 
d 3 !? 
-£)-*G 
0 
s m' 
( z 
- 
(4.) 
_ f JL ill 
T‘$J A 4 V_ r 3 Tn 3 -' 
dt 2 V ^ r°j r- vr° r 0 - 
quibus in aequationibus solutio problematis nostri jam latet. Quodsi enim partes 
dexterae aequationum harum pro datis intervallis computantur, valores incrementorum 
facile per quadraturam mechanicam inveniuntur. 
Sed observare licet incrementa illa implicite in partibus dexteris aequationum 
(4.) latere, quum quantitates x y z et q ab iis pendeant. Facile tarnen intelligitur in 
prima approximatione pro initio perturbationum ubi valores quantitatum £ y\ £ perexigui 
evadunt, loco x y z illas x 0 y 0 z 0 adhiberi posse. Praeterea semper licebit ex indole 
hujus calculi valores illarum £ n £ approximates designare, qui ad partes dexteras 
calculandas sufficienter exacti erunt. 
Brevitatis causa statuendo 
X 0 y y° Z ° P 
o Tq — p -4— yj £ 
l o *o * o 
habemus: 
Y x n . P 3 x 0 . 
7 - TT 
y _ y» , jL 
r r 0 r 0 3 
- — _l Ä- 3 z ° ft r 
r r ' r 3 r 4 dI o 
1 1 0 *0 *0 
rejectis terminis omnibus ordinis superioris quam primi respectu quantitatum £ y £ <j*r 0 , 
unde fit: 
-x' — x„ 
d 2 
dt 2 
+ $ 01 - 0 
*0 + 7? 0 r! St ° - 0 
?0 + £> C 3 1 p> - 0 
Prof. Encke autem aliam termini ultimi transformationem proposuit, per quam 
ilium omni quo velis rigore computare liceat. Ponit ille: 
-<£-?) = £0— £ 0 = £[0 -£) * -1]
	        
Waiting...

Note to user

Dear user,

In response to current developments in the web technology used by the Goobi viewer, the software no longer supports your browser.

Please use one of the following browsers to display this page correctly.

Thank you.